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Was Trump’s 2020 election loss due to unfair practices?

March 2021, 55% of polled U.S. Republicans thought Trump’s loss was due
to “illegal voting or election rigging.”

Political Discourse is full of assertions about the world, hypotheticals, and disputes over
opponents’ claims.
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Beliefs

More people in Wisconsin
> voted than were registered

There was a glitch in the vote
counting software in Michigan.

Epistemic Stancel

“what entity believes and
communicates as true”

Raw Text

>

< Belief Holders

1This Work:
Epistemic Stance Analysis: Anderson, 1986; Biber and Finegan, 1989; Palmer, 2001; Arrese, 2009; Langacker, 2009
Concept Networks: Beauchamp et al., 2017; Heider, 1958

In contrast to
Sentiment, affect and subjectivity analysis: Liu, 2012; Pang and Lee, 2008; Ochs and Schieffelin, 1989

Opinion mining: Wiebe et al., 2005; Bethard et al., 2004; Kim and Hovy, 2004; Choi et al., 2005
Argument mining: Trautmann et al., 2020: Toulmin, 1958; Walton, 1996
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Beliefs
More people in Wisconsin There was a glitch in the vote
voted than were registered counting software in Michigan.
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Query knowledge base to answer socio-political questions

“What fraction of Republicans
believe Wisconsin elections were unfair?”

Belief communities, political polarization, filter bubbles in social networks, possibly fake news

This work: Epistemic stances between beliefs and belief holders 4
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&

[Mitch McConnell]s3 saides [Obama]lgq was not listeninges to Republican ideas.

[-]

Positive: The source believes that the event happened.
Negative: The source believes that the event did not happen.

The source is about the status of the event.
Non-Epistemic: Does not make sense to assess stance of this source-event pair.
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Crowdsourced Annotations

onee

Despite the clever Reagan mantra, government became the solution again - with the losses borne not by those
individuals who wrecked the economy while growing wealthy, but by the very community they scorned.

Source: government
Event: borne

What is this source's belief about the highlighted event or property?

O Did happen or is true
O Did not happen or is not true
O Unsure

O N/A (the question doesn't make sense)

A sample prompt shown to annotators.
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PoliBelief Corpus

Statistics
(Count of Annotated Event Source Pairs)

Positive Negative Uncommitted Non-Epistemic Total
(Event happened) (Event did not happen) (Uncertain) (Does not make sense)
1176 254 641 6394 8465

Labels: Annotator reliability weighted judgments (MACE; Hovy et al., 2013).

Inter-Annotator Agreement Rates

Raw 79.3
Chance-adjusted (Krippendorff a) 55.41

1Broadly in line with prior literature (Prabhakaran et al., 2015; Rudinger et al., 2018b; Sauri and Pustejovsky, 2012; de Marneffe et al., 2012)
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[Author]sq: Historically, [Germany]ss has conceivedeq nuclear power to be safees.
o
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form an idea
in the mind

Lexicon Based Approach
(DeFacto, Sauri and Pustejovsky, 2012)

Lexicon

Positive Stance ! /

. Think . . . .
2. Suppose Brittle! Words can have different meanings in different contexts

. Believe
. Imagine
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Q Q ...... Q Q ...... Q
A A A
| | | | | |

[Author]sq: Historically, [Germany]s> has imaginede1 nuclear power to be safees.

BERT (Devlin et al., 2019)

1. Captures how words interact to create semantic meaning.l

2. Useful in syntactic and semantic parsing tasks.1

3. Public release (pre-trained on large unlabeled textual corpora).2

1 Usefulness of BERT: Tenney et al., 2019; Rogers et al., 2020.
2 Public Release: Paszke et al., 2017; Gardner et al., 2018; https://huggingface.co/transformers/model doc/bert.html
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1Howard and Ruder, 2018; Devlin et al., 2019, Pruksachatkun et al., 2020; Vu et al., 2020; Han and Eisenstein, 2019




ReSUItS: MOdeI Performance 95% Confidence Intervals

90
go! 1 Macro Avg
%;';70 64.5%
m < 60 1
= 47.1%
QS © 50 =
- O
© g 40 1
S 30
B 20
@
10
FactBank PoliBelief
(News) (Political Opinion)
Our Dataset
< Fine-tuning Training Dataset >

19

“*More results for frozen BERT setting and performance in absence/presence of Negative Polarity Items analysis available



ReSUItS: MOdeI Performance 95% Confidence Intervals

90

go! 1 Macro Avg
%?70 64.15%
m < 60
= 47.1%
L 250 =
© O 40
8 < 30/
B 20
@

10

FactBank PoliBelief
(News) (Political Opinion)
Our Dataset
Key Observatioifs: Fine-tuning Training Dataset >

1. Substantial domain shift.

19

“*More results for frozen BERT setting and performance in absence/presence of Negative Polarity Items analysis available



ReSUItS: MOdeI Performance 95% Confidence Intervals

90
go! 1 Macro Avg
B =70 64.5% 67.2%
g 9 : :
m < 601
= 47.1%
S 950 =
- O
© g 40 1
;< 30/
B 20
@
10
FactBank PoliBelief FactBank+PoliBelief
(News) (Political Opinion) (Both)
Our Dataset
Key Observatioifs Fine-tuning Training Dataset >

1. Substantial domain shift.
2. Domain adaptation setting (training on both domains) performs best.

19

“*More results for frozen BERT setting and performance in absence/presence of Negative Polarity Items analysis available



ReSUItS: MOdeI Performance 95% Confidence Intervals

90
go! 1 Macro Avg
B =70 64.5% 67.2%
s 2 £ :
m < 601
= 47.1%
S 950 =
- O
© g 40 1
S 30
B 20
1L
101
FactBank PoliBelief FactBank+PoliBelief
(News) (Political Opinion) (Both)
Our Dataset
Key Observatioifs Fine-tuning Training Dataset >

1. Substantial domain shift.
2. Domain adaptation setting (training on both domains) performs best. y
3. Outperforms previous rule based epistemic stance analyzer (DeFacto, Sauri and Pustejovsky, 2012).

“*More results for frozen BERT setting and performance in absence/presence of Negative Polarity Items analysis available



ReSUItS: MOdeI Performance 95% Confidence Intervals

90
go! 1 Macro Avg
B =70 64.5% 67.2%
s 2 £ :
m < 601
= 47.1%
S 950 =
- O
© g 40 1
S 30
B 20
1L
101
FactBank PoliBelief FactBank+PoliBelief
(News) (Political Opinion) (Both)
Our Dataset
Key Observatioifs Fine-tuning Training Dataset >

1. Substantial domain shift.
2. Domain adaptation setting (training on both domains) performs best. y
3. Outperforms previous rule based epistemic stance analyzer (DeFacto, Sauri and Pustejovsky, 2012).

“*More results for frozen BERT setting and performance in absence/presence of Negative Polarity Items analysis available



4. Case Study



Case Study: Belief Holder Identification

A preliminary step towards building knowledge base of beliefs is to identify belief holders.

Beliefs
More people in Wisconsin There was a glitch in the vote
voted than were registered counting software in Michigan.
4 [+ H [l 4
/ \ |

+«—  Belief Holders —



Case Study: Belief Holder Identification

A preliminary step towards building knowledge base of beliefs is to identify belief holders.
Beliefs

More people in Wisconsin There was a glitch in the vote
voted than were registered counting software in Michigan.

+«—  Belief Holders —



Case Study: Belief Holder Identification

A preliminary step towards building knowledge base of beliefs is to identify belief holders.
Beliefs

More people in Wisconsin There was a glitch in the vote
voted than were registered counting software in Michigan.

+«—  Belief Holders —

Open Problem
How can we identify entities which hold beliefs according to the author of the text?

21



Case Study: Belief Holder Identification

A preliminary step towards building knowledge base of beliefs is to identify belief holders.
Beliefs

More people in Wisconsin There was a glitch in the vote
voted than were registered counting software in Michigan.

+«—  Belief Holders —

Open Problem
How can we identify entities which hold beliefs according to the author of the text?

Belief Holder [+] [-] [NE]

Entity with Epistemic Stance | i ' : :
Epistemic Stances Non-Epistemic Stance

21



Case Study: Belief Holder Identification

A preliminary step towards building knowledge base of beliefs is to identify belief holders.
Beliefs

More people in Wisconsin There was a glitch in the vote
voted than were registered counting software in Michigan.

+«—  Belief Holders —

Open Problem
How can we identify entities which hold beliefs according to the author of the text?

Belief Holder [+] [-] [NE]

Entity with Epistemic Stance | . J . E—
Epistemic Stances Non-Epistemic Stance

1. Traditional entities (e.g., person, organization) hold beliefs.
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A preliminary step towards building knowledge base of beliefs is to identify belief holders.
Beliefs

More people in Wisconsin There was a glitch in the vote
voted than were registered counting software in Michigan.

+«—  Belief Holders —

Open Problem
How can we identify entities which hold beliefs according to the author of the text?

Belief Holder [+] [-] [NE]

Entity with Epistemic Stance | . J . E—
Epistemic Stances Non-Epistemic Stance

1. Traditional entities (e.g., person, organization) hold beliefs.
2. However, countries, events and work of art can also have beliefs.
3. See forthcoming paper: belief holder extraction; quantitative analysis against NER. *
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Abdul-dabbar and Obstfeld, 2016

Negative: The source believes that the event did not happen.
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Case Study: Examples

Agency versus location interpretation of a geo-political entity.

/[']\ Government

Author: The truth was, in 1914, [Germany]s doesn't want.1 war. 7 Belief Holder

Abdul-dabbar and Obstfeld, 2016

/[N E]\

Author: While reporters waitede4 outside in the [lowa]sq cold

' Location
[NE] x Belief Holder

amid a mix-up at one of Trump's rallies, his supporters shoutede2 insults.

Abdul-dabbar and Obstfeld, 2016

[-] Negative: The source believes that the event did not happen.
[NE] Non-Epistemic: Does not make sense to assess stance of this source-event pair.
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Main Takeaways

1. Task
Epistemic stance in the political domain.

2. New Dataset
Annotations for U.S. political books with diverse ideologies.

3. Model

Developed baseline BERT based model.

4. Case Study

ldentified interesting belief holders using epistemic stance modelling.

Dataset and Model
https://github.com/slanglab/factuality data

Thanks!
Questions?
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Case Study: Examples
Belief holder identified by our model but missed by NER.

ﬂi\

Author: Certain [Politicians]g and entrepreneurs conspiree1 10 keepe2 the poor

[+]
\

just as they are in order to financially exploite3 their condition.

Abdul-Jabbar and Obstfeld, 2016

[+] Positive: The source believes that the event happened. °°
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Case Study: Examples
Belief holder identified by our model but missed by NER.

ﬂi\

Author: Certain [Politicians]g and entrepreneurs conspiree1 10 keepe2 the poor

e

just as they are in order to financially exploite3 their condition.

Abdul-dabbar and Obstfeld, 2016
Politicians with positive stance is considered as a belief holder.

Politicians believe they're conspiring and believe the conspiracy goals are happening.

[+] Positive: The source believes that the event happened. °°
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Results: Negative Polarity Items (NPI) Analysis

Negative Polarity Items: no, not, n’t, never, nobody, none etc.

Hypothesis: Can we use NPI lexicon to predict Negative Epistemic Stance?

[-]\
[Author]sq: This legislation won't solveeq the problem,
T[+]
—
but it will promotegs progressive ideas.

In a sentence with NPI, not all source-event pairs have negative epistemic stance.

Negative: The source believes that the event did not happen. 57
Positive: The source believes that the event happened.
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Results: Negative Polarity Items (NPI) Analysis

BERT model predicted label !

/ [-]\

[Author];4: Unable to reache4 Russo in the era before cell phones, the House Speaker kept the vote open.

Sentences without NPl may contain source-event pairs with negative epistemic stance.

Is BERT capable of handling negation-bearing constructions?

The BERT has some ability to deal with such complex connections between negation-bearing
constructions like unable to, difficult, refuse, etc.

28
Negative: The source believes that the event did not happen.



Results: Comparison to DeFacto

DeFacto is a rule-based model for multi-source predictions on FactBank corpus

Label DeFacto BERT

Pos 84.0 90.340.011
Neg 75.0 77.0+0.088
Uu 76.0 85.640.015

Macro Avg. 78.3 84.240.031

F1 measure for epistemic-only three-class models
evaluated on FactBank.

Key Observations:
1) Validation of our modelling approach.

2) The BERT model outperforms DeFacto for all categories (p-value = 0.04, two-tailed test).
3) Negative class is slightly improved.



Key Observation.

Relationship with Named Entity Recognition (NER)

Viewing any entity with epistemic stances as a belief holder

P (Belief-Score | NER Type)

0.3

. 0.26 ---- Baseline (P (Belief-Score | Any NER Type))
%

© 0.2
2 0.17 ..
(a

O 0.13

0.1 0.09

Q 0.07 0.06
<

0.03 0.02
0.01
0.0 PER ORG WOA NORP GPE LAW PROD LOC EVENT FAC LANG
NER Type

Different NER categories display a range of likelihood to be belief holders.
Person type has highest belief score.
Non-obvious types such as Work of Art as belief holders.

An NER type whitelist may miss significant belief holders.
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