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Was Trump’s 2020 election loss due to unfair practices?

March 2021, 55% of polled U.S. Republicans thought Trump’s loss was due 
to “illegal voting or election rigging.”

Political Discourse is full of assertions about the world, hypotheticals, and disputes over 
opponents’ claims.
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1This Work: 
Epistemic Stance Analysis: Anderson, 1986; Biber and Finegan, 1989; Palmer, 2001; Arrese, 2009; Langacker, 2009 
Concept Networks: Beauchamp et al., 2017; Heider, 1958
In contrast to
Sentiment, affect and subjectivity analysis: Liu, 2012; Pang and Lee, 2008; Ochs and Schieffelin, 1989
Opinion mining: Wiebe et al., 2005; Bethard et al., 2004; Kim and Hovy, 2004; Choi et al., 2005
Argument mining: Trautmann et al., 2020; Toulmin, 1958; Walton, 1996 
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More people in Wisconsin 
voted than were registered

There was a glitch in the vote 
counting software in Michigan.

Beliefs

4

Query knowledge base to answer socio-political questions

[+] [+] [+] [+][-] [-]

Belief Holders

Answer socio-political 

questions

Belief communities, political polarization, filter bubbles in social networks, possibly fake news

“What fraction of Republicans 

believe Wisconsin elections were unfair?”

This work: Epistemic stances between beliefs and belief holders

Analyzing political discourse
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Overview
• Contemporary American Ideological 

Books (    published 1999 - 2018; Sim et 
al., 2013).

• For annotations: 308 sentences, one 
from each book.

• Linguistically complex: 
• Sentences with > 15 tokens 
• At least one embedded event.

PoliBelief Corpus
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PoliBelief Corpus

1Broadly in line with prior literature (Prabhakaran et al., 2015;  Rudinger et al., 2018b;  Saurí and Pustejovsky, 2012; de Marneffe et al., 2012) 

Inter-Annotator Agreement Rates


Raw 	 	                                             79.3

Chance-adjusted (Krippendorff α)     55.41

Statistics 

(Count of Annotated Event Source Pairs)


 Positive

(Event happened)

Negative

(Event did not happen)

Uncommitted

(Uncertain)

Non-Epistemic

(Does not make sense)

Total

1176 254 641 6394 8465

Labels: Annotator reliability weighted judgments (MACE; Hovy et al., 2013). 
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(DeFacto, Saurí and Pustejovsky, 2012) 

Positive Stance

Lexicon

1. Think

2. Suppose

3. Believe

4. Imagine

5. ..

15



 [+]

Lexicon Based Approach  
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Lexicon Based Approach  

(DeFacto, Saurí and Pustejovsky, 2012) 

Positive Stance

Lexicon

1. Think

2. Suppose

3. Believe

4. Imagine

5. ..

Brittle!

form an idea 
in the mind

child birth

Words can have different meanings in different contexts

?
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Contextualized Word Embeddings

BERT (Devlin et al., 2019)

1. Captures how words interact to create semantic meaning.1

2. Useful in syntactic and semantic parsing tasks.1

3. Public release (pre-trained on large unlabeled textual corpora).2

…… ……

1 Usefulness of BERT: Tenney et al., 2019; Rogers et al., 2020. 
2 Public Release: Paszke et al., 2017; Gardner et al., 2018; https://huggingface.co/transformers/model_doc/bert.html 16
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Model Training
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Intermediate 
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News Domain
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1Howard and Ruder, 2018; Devlin et al., 2019, Pruksachatkun et al., 2020; Vu et al., 2020; Han and Eisenstein, 2019 
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How can we identify entities which hold beliefs according to the author of the text?

A preliminary step towards building knowledge base of beliefs is to identify belief holders.

1. Traditional entities (e.g., person, organization) hold beliefs.
2. However, countries, events and work of art can also have beliefs.
3. See forthcoming paper: belief holder extraction; quantitative analysis against NER. 
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4. Case Study

Identified interesting belief holders using epistemic stance modelling.

3. Model

Developed baseline BERT based model. 

1. Task

Epistemic stance in the political domain.

2. New Dataset

Annotations for U.S. political books with diverse ideologies.

Main Takeaways

Dataset and Model 

https://github.com/slanglab/factuality_data

Thanks! 
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Belief holder identified by our model but missed by NER.
Case Study: Examples

Politicians believe they're conspiring and believe the conspiracy goals are happening.

Abdul-Jabbar and Obstfeld, 2016 

[+] Positive: The source believes that the event happened.

Politicians with positive stance is considered as a belief holder.
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Results: Negative Polarity Items (NPI) Analysis

Hypothesis: Can we use NPI lexicon to predict Negative Epistemic Stance?
Negative Polarity Items: no, not, n’t, never, nobody, none etc.

In a sentence with NPI, not all source-event pairs have negative epistemic stance.

[+]

27Negative: The source believes that the event did not happen.
Positive: The source believes that the event happened.
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Sentences without NPI may contain source-event pairs with negative epistemic stance.

Results: Negative Polarity Items (NPI) Analysis

BERT model predicted label !

Is BERT capable of handling negation-bearing constructions?


The BERT has some ability to deal with such complex connections between negation-bearing 
constructions like unable to, difficult, refuse, etc. 

28
Negative: The source believes that the event did not happen.



Results: Comparison to DeFacto

F1 measure for epistemic-only three-class models 
evaluated on FactBank.

Key Observations:

1) Validation of our modelling approach.

2) The BERT model outperforms DeFacto for all categories (p-value = 0.04, two-tailed test).

3) Negative class is slightly improved.

DeFacto is a rule-based model for multi-source predictions on FactBank corpus
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Relationship with Named Entity Recognition (NER)

Key Observations

• Different NER categories display a range of likelihood to be belief holders. 

• Person type has highest belief score.

• Non-obvious types such as Work of Art as belief holders.

An NER type whitelist may miss significant belief holders.

Viewing any entity with epistemic stances as a belief holder

30


